STUDIES OF THE PREPARATION AND PHYSICAL PROPERTIES OF MULTIVALENT METAL CONDENSED PHOSPHATES. $\mathbf{x}.^{1)}$ PREPARATION AND THERMAL TRANSFORMATION OF TITANIUM(\mathbf{m}) TETRAMETAPHOSPHATE

Mitsutomo TSUHAKO

Kobe Women's College of Pharmacy, Motoyama, Higashinada-ku, Kobe 658

Itaru MOTOOKA, and Masamitsu KOBAYASHI

Department of Chemistry, Faculty of General Education, Kobe University,
Tsurukabuto, Nada-ku, Kobe 657

Titanium tetrametaphosphate $\text{Ti}_4(\text{P}_4\text{O}_{12})_3$ is readily formed in a nitrogen stream or vacuum. It is found from the X-ray diffraction pattern that $\text{Ti}_4(\text{P}_4\text{O}_{12})_3$ is isomorphous with the A type of aluminum tetrametaphosphate $\text{Al}_4(\text{P}_4\text{O}_{12})_3$. $\text{Ti}_4(\text{P}_4\text{O}_{12})_3$ shows a large exothermic peak at 250 \sim 400 °C and a small endothermic peak at 650 \sim 660 °C, and this compound is gradually converted at 250 \sim 400 °C to give titanium pyrophosphate TiP_2O_7 and P_2O_5 .

Although various studies have been carried out on titanium(\mathbf{W}) phosphate, 2 \sim 4) little has been reported on the preparation, structure, and thermal transformation of $\mathrm{Ti}_4(\mathrm{P}_4\mathrm{O}_{12})_3$; the report by Liebau and Williams⁵⁾ is the only one on the preparation and structure of this compound. However, it was very difficult to form $\mathrm{Ti}_4(\mathrm{P}_4\mathrm{O}_{12})_3$ purely by their method. Appropriate conditions of formation for this compound is not yet fully revealed. Therefore, in the present experiment we have studied the formation conditions of $\mathrm{Ti}_4(\mathrm{P}_4\mathrm{O}_{12})_3$, for example molar ratio $\mathrm{TiO}_2/\mathrm{P}_2\mathrm{O}_5$ (R) in the starting material, heating temperature and heating atmosphere and investigated its composition and thermal transformation by X-ray analysis, infrared absorption spectroscopy, and simultaneous measurements of differential thermal analysis and thermogravimetry (DTA, TG). To study the similarity in structures of $\mathrm{Ti}_4(\mathrm{P}_4\mathrm{O}_{12})_3$ and A type of $\mathrm{Al}_4(\mathrm{P}_4\mathrm{O}_{12})_3$, we have also compared X-ray diffraction pattern and IR spectrum of $\mathrm{Ti}_4(\mathrm{P}_4\mathrm{O}_{12})_3$ with those of $\mathrm{Al}_4(\mathrm{P}_4\mathrm{O}_{12})_3$.

Fig. 1. X-ray diffraction patterns of titanium(${\bf m}$) and aluminum tetrametaphosphates

Fig. 2. IR spectra of titanium(III) and aluminum tetrametaphosphates

Titanium metal and phosphoric acid were mixed in a porcelain crucible in a molar ratio R of $1/1 \sim 1/5$, and the mixture was dehydrated by heating over a weak flame under vigorous agitation. The reaction was vigorous with foaming and the evolution of hydrogen. This dehydration product was further heated in air, nitrogen stream (50 ml/min) or vacuum(0.01 mm Hg) at $300 \sim 700^{\circ} \text{C}$ for 5 hrs. Though a mixture of $\text{Ti}_4(\text{P}_4\text{O}_{12})_3$ and TiP_2O_7 was usually given when the dehydration product was heated in air, $\text{Ti}_4(\text{P}_4\text{O}_{12})_3$ was purely formed when the dehydration product of R = $1/3 \sim 1/4$ was heated in a nitrogen stream or vacuum at 500°C for 5 hrs. Also, chiefly TiP_2O_7 was obtained irrespective of the heating atmosphere when molar ratio R was larger than 1/3. $\text{Ti}_4(\text{P}_4\text{O}_{12})_3$ purely formed was rapidly washed to remove excess phosphoric acid, with distilled water through which nitrogen gas had been passed, then dried at 80°C for 24 hrs.

Fig. 1 shows that the X-ray diffraction peaks of ${\rm Ti}_4({\rm P}_4{\rm O}_{12})_3$ are shifted to lower diffraction angles than those of A type of ${\rm Al}_4({\rm P}_4{\rm O}_{12})_3$, which suggests that ${\rm Ti}_4({\rm P}_4{\rm O}_{12})_3$ has longer crystallographic axes than A type of ${\rm Al}_4({\rm P}_4{\rm O}_{12})_3$ has (ion radii of ${\rm Ti}^{3+}=0.76$ Å, ${\rm Al}^{3+}=0.50$ Å).

Fig. 2 shows the infrared absorption spectra of $\text{Ti}_4(P_4O_{12})_3$ and $\text{Al}_4(P_4O_{12})_3$. Like the aluminum compound, $\text{Ti}_4(P_4O_{12})_3$ shows a doublet P-O-P (asymmetric bending) absorption at 1000 \sim 1100 cm^{-/} and two P-O-P (symmetric bending) absorption peaks near 803 and 730 cm^{-/}.

DTA and TG of $\mathrm{Ti}_4(\mathrm{P}_4\mathrm{O}_{12})_3$ in Fig. 3 show a large exothermic peak at 250 ~ 400°C with an increase in weight. At over 400°C, the weight begins to decrease gradually and is almost constant with weight loss of about 22 % at about 660°C. A small endothermic peak is noticed about 650 ~ 660°C. When differential thermal analysis of $\mathrm{Ti}_4(\mathrm{P}_4\mathrm{O}_{12})_3$ was carried out in a nitrogen stream (25 ml/min), neither the exothermic nor endothermic peak described above was observed, and no change in weight was seen. The results of X-ray analysis indicate that the blue color of $\mathrm{Ti}_4(\mathrm{P}_4\mathrm{O}_{12})_3$ disappears and white colored $\mathrm{TiP}_2\mathrm{O}_7$ is formed at temperature above point B (500°C) in Fig. 3. The product heated at the temperature of point A (370 ~ 390°C) shows large hygroscopicity if left in the air . From these results we can say that the following reaction takes place when $\mathrm{Ti}_4(\mathrm{P}_4\mathrm{O}_{12})_3$ is heated in air;

$$\text{Ti}_{4}(P_{4}O_{12})_{3} + O_{2} \xrightarrow{370 \sim 390 \text{ °C}} \text{4 Ti}P_{2}O_{7} + 2 P_{2}O_{5}$$

Fig. 3. DTA and TG of titanium tetrametaphosphate

The oxidation of $\text{Ti}_4(\text{P}_4\text{O}_{12})_3$ begins gradually at 250 \sim 400 °C to give TiP_2O_7 and P_2O_5 . On the other hand, A type of $\text{Al}_4(\text{P}_4\text{O}_{12})_3$ does not show any thermal change at all up to 1000 °C.

References

- 1) For part IX of this series, M. Tsuhako, I. Motooka, and M. Kobayashi, Nippon Kagaku Zasshi, in press.
- 2) G. R. Levi and G. Peyronell, Z. Krist., 92, 190 (1935).
- 3) D. E. Harrison and F. A. Hummel, J. Amer. Ceram. Soc., <u>42</u>, 487 (1959).
- 4) E. Steger and G. Leukroth, Z. anorg. allgem. Chem., 303, 196 (1960).
- 5) F. Liebau and H. P. Williams, Angew. Chem., <u>76</u>, 303 (1964).

(Received February 18, 1974)